Native purification and labeling of RNA for single molecule fluorescence studies.
نویسندگان
چکیده
The recent discovery that non-coding RNAs are considerably more abundant and serve a much wider range of critical cellular functions than recognized over previous decades of research into molecular biology has sparked a renewed interest in the study of structure-function relationships of RNA. To perform their functions in the cell, RNAs must dominantly adopt their native conformations, avoiding deep, non-productive kinetic traps that may exist along a frustrated (rugged) folding free energy landscape. Intracellularly, RNAs are synthesized by RNA polymerase and fold co-transcriptionally starting from the 5' end, sometimes with the aid of protein chaperones. By contrast, in the laboratory RNAs are commonly generated by in vitro transcription or chemical synthesis, followed by purification in a manner that includes the use of high concentrations of urea, heat and UV light (for detection), resulting in the denaturation and subsequent refolding of the entire RNA. Recent studies into the nature of heterogeneous RNA populations resulting from this process have underscored the need for non-denaturing (native) purification methods that maintain the co-transcriptional fold of an RNA. Here, we present protocols for the native purification of an RNA after its in vitro transcription and for fluorophore and biotin labeling methods designed to preserve its native conformation for use in single molecule fluorescence resonance energy transfer (smFRET) inquiries into its structure and function. Finally, we present methods for taking smFRET data and for analyzing them, as well as a description of plausible overall preparation schemes for the plethora of non-coding RNAs.
منابع مشابه
An Efficient Site-Specific Method for Irreversible Covalent Labeling of Proteins with a Fluorophore
Fluorophore labeling of proteins while preserving native functions is essential for bulk Förster resonance energy transfer (FRET) interaction and single molecule imaging analysis. Here we describe a versatile, efficient, specific, irreversible, gentle and low-cost method for labeling proteins with fluorophores that appears substantially more robust than a similar but chemically distinct procedu...
متن کاملSite-specific dual-color labeling of long RNAs for single-molecule spectroscopy
Labeling of long RNA molecules in a site-specific yet generally applicable manner is integral to many spectroscopic applications. Here we present a novel covalent labeling approach that is site-specific and scalable to long intricately folded RNAs. In this approach, a custom-designed DNA strand that hybridizes to the RNA guides a reactive group to target a preselected adenine residue. The funct...
متن کاملEfficient single-molecule fluorescence resonance energy transfer analysis by site-specific dual-labeling of protein using an unnatural amino acid.
Single-molecule fluorescence resonance energy transfer (smFRET) measurement provides a unique and powerful approach to understand complex biological processes including conformational and structural dynamics of individual biomolecules. For effective smFRET analysis of protein, site-specific dual-labeling with two fluorophores as an energy donor and an acceptor is crucial. Here we demonstrate th...
متن کاملMethods of site-specific labeling of RNA with fluorescent dyes.
Single molecule fluorescence techniques offer unique insights into mechanisms of conformational changes of RNA. Knowing how to make fluorescently labeled RNA molecules and understanding potential limitations of different labeling strategies is essential for successful implementation of single molecule fluorescence techniques. This chapter offers a step by step overview of the process of obtaini...
متن کاملRapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.
Fluorescence analysis has proved to be a powerful detection technique for achieving single molecule analysis. However, it usually requires the labeling of targets with bright fluorescent tags since most chemicals and biomolecules lack fluorescence. Conventional fluorescence labeling methods require a considerable quantity of biomolecule samples, long reaction times and extensive chromatographic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods in molecular biology
دوره 1240 شماره
صفحات -
تاریخ انتشار 2015